Student race team produces 3D printed mold for highly complex part in just five hours, compared to three weeks lead time with conventional aluminum molds

Significant weight reduction of 60 percent achieved results in higher performance on the track

Stratasys FDM sacrificial tooling enables the team to produce carbon fiber composite intake manifolds with a complex geometry in a single manufacturing operation

Stratasys, a global leader in applied additive technology solutions, has announced that student motorsport team Tecnun is slashing the time taken to create complex end-use race parts while significantly reducing their weight by using Stratasys’ 3D printed sacrificial cores to innovate composite part production.

Tecnun, the Formula student team from the University of Navarra in Spain, designs and manufactures its own Formula Student race cars that compete each year at the Formula Student International competition. Harnessing Stratasys’ additive manufacturing technology through the its local reseller, Pixel Sistemas, Tecnun is now able to produce extremely complex 3D printed molds for key race parts in a matter of a few hours, compared to three weeks when using traditionally-manufactured aluminum molds.

Importantly, using the time saved during production, the team is able to make further iterations to its designs and develop final carbon fiber parts that are 60 percent lighter than conventional production methods, thereby increasing the cars’ performances on the track.

As Javier Aperribay, Technical Director of Tecnun Motorsport, explains, crucial to success and one specific area in which Stratasys’ technology can be successfully deployed, is the design of the intake manifold – a component vital to ensuring enough air reaches the engine cylinders in order to increase speed.

“Manufacturing an intake manifold is extremely complex as it comprises several important components critical to the air distribution along the four intake manifolds,” Aperribay says. “We aim to create intake manifolds in carbon fiber composites, but we’re well aware that manufacturing such a part requires a mold to lay-up the composite materials and create the final part.”

“CNC machining is used to produce the mold in aluminum, however this is typically an inflexible and costly process and on top of that, any subsequent design revisions applied to the mold delay projects and add extra costs,” he adds.

Invariably hamstrung by tight production schedules and budgetary constraints, Tecnun has in the past tested various other additive manufacturing technologies as faster and cheaper alternatives to produce the lay-up tool. However, it found that the plastics were not strong enough and broke during the lay-up process.

 Statasys FDM 2

Working with Pixel Sistemas using a Stratasys Fortus 450mc Production 3D Printer, Tecnun is now successfully producing mold tools for parts like the intake manifold. This is 3D printed in ST-130 sacrificial tooling material, before the carbon fiber composite material is wrapped around the mold. Once cured, the internal sacrificial core is washed away, leaving the final composite part.

Complex part production down from three weeks to five hours using FDM sacrificial tooling

“Using Stratasys FDM sacrificial tooling allows us to make the intake manifold from carbon fiber instead of heavier, less efficient materials,” says Aperribay. “The superior soluble characteristic of the ST-130 material enables a more complex shape of the intake manifold compared to aluminum molds, removing the need to assemble all the individual components. We can now 3D print molds for the intake manifold in just five hours, as opposed to the three weeks lead time associated with conventional aluminum molds.”

According to Aperribay, the team is also impressed with the performance of the 3D printed sacrificial core molds during the carbon fiber lay-up and curing processes.

“We find that the material performs in high temperatures of up to 121°C and, at certain temperatures, pressures of up to 620 kPa throughout curing,” he says. “Unlike the previous additive polymer materials, we tested, the mold doesn’t break, and the quality of the resulting carbon fiber composite intake is fantastic.

“Using this technology has facilitated the optimal combustion reaction and has seen us increase performances on the track”, says Aperribay “Moving forward, there is very little doubt that FDM sacrificial tooling will play a crucial role in overcoming our ongoing engineering challenges.”

“Tecnun’s use of 3D printed sacrificial cores to reduce production times and increase part complexity – and their use of this time-saving for further design iterations to produce what are ultimately much lighter parts – mirrors the way some of professional motorsport’s best-known teams are also benefitting from our technology,” says Andy Middleton, President, EMEA, Stratasys. “For us, it is thrilling to see tomorrow’s engineers embrace this technology so successfully as the rise of additive manufacturing continues within the automotive sector.”